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Abstract In enzyme kinetics, the Quasi-Steady-State Assumption (QSSA) has been
proposed for over 80 years, which plays a very important role in simplifying systems
of equations derived from chemical reactions with enzymes. Five years ago, we proved
that the QSSA is always true in the simplest model with the second elementary reaction
irreversible, and called them as Quasi-Steady-State Laws. Thus, all conclusions based
on QSSA have a solid foundation in irreversible case. However, the chemical reactions
are not always so simple in many life processes. The second elementary reaction should
be reversible in general, and the irreversible case is actually only an approximation.
So it is more important and interesting to study the reversible case, and it has already
attracted enzymologists for a long time. The basic assumption, i.e. QSSA in this
general case has appeared in 1930. We proved this lasting over 80 years assumption
in this paper.

Keywords Michaelis–Menten equation · Rate constants of enzyme kinetics ·
Quasi-Steady-State Assumption

1 Introduction

In 1892, Adrian Brown studied the chemical reaction of hydrolysis of sucrose by
yeast β–fructofuranosidase. He found that when the concentration of sucrose is much
greater than that of enzymes, the reaction rate is irrelevant to the concentration of
sucrose [1]. In 1902, he proposed that this phenomenon can be explained if the reaction
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consisted of many small elementary steps and immediate products had been produced
[2]. Meanwhile, Victor Henri [3] proposed two reaction mechanisms which contains
only one substrate and one product with an immediate product. One of them became
the basic model of enzyme kinetics. The reaction is composed of two elementary steps.
In the first step, the substrate S and enzyme E form a complex C with rate k1 and
reversible rate k−1. In the second step which is assumed to be irreversible, the complex
decomposes into product P and enzyme E with rate k2.

E + S
k1�

k−1
C

k2−→ P + E . (1)

Based on the law of mass action, the whole reaction process is determined by the
following nonlinear differential equations [4]:

d S

dt
(t) = −k1S(t)E(t) + k−1C(t) (2)

d E

dt
(t) = −k1S(t)E(t) + (k−1 + k2)C(t) (3)

dC

dt
(t) = k1S(t)E(t) − (k−1 + k2)C(t) (4)

d P

dt
(t) = k2C(t) (5)

with the initial condition

(S(0), E(0), C(0), P(0)) = (S0, E0, 0, 0). (6)

Because this nonlinear system can not be integrated explicitly, Michaelis and Menten
[5] proposed equilibrium assumption in 1913 to simplify this system. However, Briggs
and Haldane [6] pointed out that the Michaelis assumption is not always justified.
It based on a usually unrealistic condition k−1 � k2. They proposed the famous
assumption Quasi-Steady-State Assumption(QSSA) under a more realistic condition
S0 � E0.

By QSSA, they got the famous Michaelis–Menten equation.

v0 = VmaxS

KM + S
(7)

The Michaelis–Menten equation is considered to provide a good relationship among
these rate constants. At the single-molecule level, the enzyme molecule moves accord-
ing to thermal fluctuation and reacts stochastically with substrate molecules [7,8]. By
the statistical analysis of the stochastic behave, Michaelis–Menten equation also holds
[9,10]. Recently, Bajzer and Strehler [11] provided a new formula which is more accu-
rate than Michaelis–Menten equation under QSSA.

Since the work of Briggs and Haldane, QSSA has become a fundamental assumption
in enzyme kinetics. It has been proven very useful in finding approximate explicit
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analytical solutions [12,13] and parameter estimations [14–17]. QSSA was used to
reduce the complexity of biochemical systems, such as metabolic processes and genetic
regulation processes [18].

Although QSSA is consistent with all the experiments known, we can not ensure
that this assumption is also true in undone experiments or numerical computations.
In fact, QSSA has been wrongly abused in great extend [19–21]. Laidler [22] first
discussed the validity of QSSA, and he thought that the condition S0 � E0 was very
important. Segel thought E0 � S0 + KM can guarantee the validity of QSSA [4,23].
Recently, Hanson and Schnell [24] found that during the initial transient period, the
concentration of substrate is almost unchanged has little relationship with QSSA.
Goussis analyzed the relationship of the quasi steady state and partial equilibrium
approximations in more general condition [25]. In 2008, we proved mathematically
that QSSA is always true when S0 � E0 in the above model [26], which is the first try
of applying dynamical systems into the analysis of enzyme catalysis. Then, we call it
Quasi-Steady-State Law.

In the above basic model, the second elementary step is irreversible. The chemical
reactions are not always so simple in many life processes. The second elementary
reaction should be reversible. Even some reaction catalyzed by enzymes which had
been considered irreversible, was found to be reversible under certain conditions [27].
But the reversible case was paid less attention for the complexity of the mathematical
analyzing. Here, we call it the Reversible Model.

E + S
k1�

k−1
C

k2�
k−2

P + E, (8)

where E, S, C, P represent enzyme, substrate, enzyme-substrate complex and prod-
uct, respectively. And k1, k−1, k2, k−2 represent the rate constants of corresponding
reaction steps.

Based on the law of mass action, the whole reaction process is determined by the
following nonlinear differential equations

d S

dt
(t) = −k1S(t)E(t) + k−1C(t) (9)

d E

dt
(t) = −k1S(t)E(t) + (k−1 + k2)C(t) − k−2 P(t)E(t) (10)

dC

dt
(t) = k1S(t)E(t) − (k−1 + k2)C(t) + k−2 P(t)E(t) (11)

d P

dt
(t) = k2C(t) − k−2 P(t)E(t) (12)

with the initial condition

(S(0), E(0), C(0), P(0)) = (S0, E0, 0, 0). (13)

where E(t), S(t), C(t) and P(t) denote the concentrations of enzyme, substrate,
enzyme-substrate complex and product at time t during the process, respectively.
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And the two conservation laws are

E(t) + C(t) = E0, (14)

S(t) + C(t) + P(t) = S0. (15)

This Reversible Model is more complicated than Henri’s irreversible basic model
(1). A straightforward method to simplify Reversible Model is to use the assumptions
used in the basic model. Thus, a question raised that whether the assumptions used in
the basic model are also valid in Reversible Model. Haldane [28] first proposed the
QSSA in Reversible Model just like that in the basic model. In 1958, Miller and Alberty
[29] derived the exact analytical solutions to this system only for the case k1 = k−2,
and they found that the Quasi-Steady-State approximation was a good approximation
if S0 � E0. After that, many numerical experiments showed that Quasi-Steady-State
approximation was also true in the reversible case [30]. Moreover, many concepts and
assumptions derived from Henri’s basic model were testified in the reversible case
directly, such as total Quasi-Steady-State Assumption (tQSSA) [31,32]. However, the
question we asked in [26] is still unanswered for the Reversible Model:

“Question: Is QSSA always true for any group of reaction rate constants or if it is
only true for the reaction rate constants satisfying some conditions?”

Here, in this paper, we do the same thing as in [26] for the Reversible Model. That is
we use qualitative theory of dynamical systems to give a rigorous mathematical proof
of QSSA in Reversible Model. But it is surely more complicated, and more interesting.
As QSSA is also valid in this case, we call it Quasi-Steady-State Law in Reversible
Model (QSSL in RM) from now on.

2 Quasi-Steady State Laws in reversible model

In this section, we repeat the Quasi-Steady-State Assumption as stated in the famous
text book again [33]: Under the physiologically common condition that substrate is
in great excess over enzyme (S0 � E0), the enzyme-substrate complex C remains
approximately constant until the substrate is nearly exhausted with an exception of
the transient initial stage of the reaction.

In [26], we stated and proved the two Quasi-Steady-State Laws in the model whose
second elementary step is irreversible, i.e. k−2 = 0.

Quasi-Steady State Law 1: Given any small positive number ε > 0, there is a proper
positive number U such that C(t) will go upwards from 0 at t = 0 to E0 −ε in a period
less than ε, then it will stay in the interval between E0 and E0 − ε until S(t)/S0 < ε,
if S0 > U .

Quasi-Steady State Law 2: Given any small positive number ε > 0, there is a proper
positive number U such that | dC

dt (t)| will be less than ε after a fast initial period less
than ε and keep this state until S(t)/S0 < ε, if S0 > U .

We have explained in great detail why two versions of Quasi-Steady State Law are
required in [26]. For convenience, we restate:

“C ≈ constant in a period and dC
dt ≈ 0 in the same period are not equivalent in

general. C ≈ constant can not ensure dC
dt ≈ 0, because dC

dt may oscillate frequently.
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Conversely, dC
dt ≈ 0 can not ensure C ≈ constant either, because C may change

significantly as time goes by.”
When k1 > k−2 > 0, i. e. the second step of the model is reversible and the direction

of the reaction is mainly from S to P , the above statement in [33] is also true. We also
summarize two versions of Quasi-Steady State Laws.

Quasi-Steady State Law 1 in Reversible Model (QSSL1 in RM): Given any small
positive number ε > 0, there is a proper positive number U such that C(t) will go
upwards from 0 at t = 0 to E0 − ε in a period less than ε, then it will stay in the
interval between E0 and E0 − ε forever.

Quasi-Steady State Law 2 in Reversible Model (QSSL2 in RM): Given any small
positive number ε > 0, there is a proper positive number U such that | dC

dt (t)| will be
less than ε forever with the exception of a fast initial period less than ε, if S0 > U .

Note that, in this model “C remains approximately constant” forever, not just “until
the substrate is nearly exhausted”.

3 Proof of QSSL1 in RM

The system (9)–(12) with initial condition (13), is equivalent to the system

d S

dt
= −k1SE + k−1(E0 − E) (16)

d E

dt
= −k1SE + (k−1 + k2)(E0 − E) − k−2 E(S0 − E0 − S + E) (17)

with initial condition (S(0), E(0)) = (S0, E0).
To make the proof more readable, we use P(S, E) and Q(S, E) to denote the

righthand polynomials of this system respectively, that is:

P(S, E) = −k1SE + k−1(E0 − E) (18)

Q(S, E) = −k1SE + (k−1 + k2)(E0 − E) − k−2 E(S0 − E0 − S + E). (19)

The equlibrium point (Ss, Es) of this system satisfies

P(Ss, Es) = 0 (20)

Q(Ss, Es) = 0 (21)

k1×(21)+(k−2 − k1)×(20) lead to

− k1k−2 E2
s − (k1k−2(S0 − E0) + k1k2 + k−1k−2)Es + (k−1k−2 + k1k2)E0 = 0.

(22)

Thus,

Es = −b ± √
b2 − 4ac

2a
, (23)
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where b = −(k1k−2(S0 − E0) + k1k2 + k−1k−2), a = −k1k−2 and c = (k−1k−2 +
k1k2)E0. It can be seen that

Es = (−b ± √
b2 − 4ac)(−b ∓ √

b2 − 4ac)

2a(−b ∓ √
b2 − 4ac)

= 2c

−b ∓ √
b2 − 4ac

. (24)

We only need to consider the positive case, i.e.

Es = 2c

−b + √
b2 − 4ac

. (25)

According to (20),

Ss = k−1(E0 − Es)

k1 Es
. (26)

Here, it is obvious that

Lemma 1

lim
S0→+∞ Es = 0. (27)

Consider the curve

Q(S, E) = 0. (28)

This is a quadratic curve with respect to variables S and E . It can be written as

−k−2 E2 + (k−2 − k1)SE + (k−2 E0 − k−2S0 − (k−1 + k2))E

+(k−1 + k2)E0 = 0, (29)

which is a hyperbola, and its center (Ŝ, Ê) satisfies

k−2 − k1

2
Ê = 0 (30)

k−2 − k1

2
Ŝ + (−k−2)Ê + −k−2(S0 − E0) − (k−1 + k2)

2
= 0 (31)

Thus,

(Ŝ, Ê) =
(

k−2(S0 − E0) + (k−1 + k2)

k−2 − k1
, 0

)
.

Moreover, the directions (l, m) of asymptotes satisfy:

(k−2 − k1)lm − k−2m2 = 0. (32)
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Fig. 1 The first quadrant of the phase plane: Q(S, E) = 0 and P(S, E) = 0 are branches of two hyperbolas,
respectively, which intersect each other at the equilibrium point. The arrows show the phase flow of this
dynamical system

They are l : m = 1 : 0 and l : m = k−2
k−2−k1

.
The curve P(S, E) = 0 can be analyzed by the same method. It is a hyperbola

with its center (−k−1/k1, 0). The directions of its asymptotes are l : m = 1 : 0 and
l : m = 0 : 1.

Now the shape of the phase flow of the system (16)–(17) can be figured.
Let L1r , L1l , L2r , L2l , R1, R2 and R3 be the point sets in the first quadrant of the

S − E plane described as following (cf. Fig. 1)

L1r = {(S, E) : Q(S, E) = 0, S > Ss},
L1l = {(S, E) : Q(S, E) = 0, 0 < S < Ss},
L2r = {(S, E) : P(S, E) = 0, S > Ss},
L2l = {(S, E) : P(S, E) = 0, 0 < S < Ss},
R1 = {(S, E) : E > Ẽ, (S, Ẽ) ∈ L1, and E > E, (S, E) ∈ L2, S ≥ 0},
R2 = {(S, E) : Ẽ > E > E, (S, Ẽ) ∈ L1, (S, E) ∈ L2, S > Ss},
R3 = {(S, E) : Ẽ > E > E, (S, Ẽ) ∈ L2, (S, E) ∈ L1, 0 ≥ S < Ss}.

Notice that L1r , L1l , L2r and L2l lie on the hyperbolas Q(S, E) = 0 or P(S, E) = 0
in the first quadrant. It must be that(cf. Fig. 1):

(1) In the region R1,

d S

dt
(t) = P(S(t), E(t)) < 0 (33)

d E

dt
(t) = Q(S(t), E(t)) < 0 (34)
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(2) In the region R2,

d S

dt
(t) = P(S(t), E(t)) < 0 (35)

d E

dt
(t) = Q(S(t), E(t)) > 0 (36)

(3) In the region R3,

d S

dt
(t) = P(S(t), E(t)) > 0 (37)

d E

dt
(t) = Q(S(t), E(t)) < 0 (38)

(4) On the curve L1r ,

d S

dt
(t) = P(S(t), E(t)) < 0 (39)

d E

dt
(t) = Q(S(t), E(t)) = 0 (40)

(5) On the curve L1l ,

d S

dt
(t) = P(S(t), E(t)) > 0 (41)

d E

dt
(t) = Q(S(t), E(t)) = 0 (42)

(6) On the curve L2r ,

d S

dt
(t) = P(S(t), E(t)) = 0 (43)

d E

dt
(t) = Q(S(t), E(t)) > 0 (44)

(7) On the curve L2l ,

d S

dt
(t) = P(S(t), E(t)) = 0 (45)

d E

dt
(t) = Q(S(t), E(t)) < 0 (46)

Observing the phase plane, we can easily obtain the following lemma.

Lemma 2 Solutions of the system (9)–(12) with initial condition (6) will finally
approach the equilibrium point (Ss, Es) as time goes to infinity. There are three
possible kinds of trajectories to approach (Ss, Es) (cf. Fig. 2):
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Fig. 2 Three possible kind of trajectories to approach the equilibrium point

1. The solution (S(t), E(t)) stays in R1 forever and finally approaches (Ss, Es);
2. The solution (S(t), E(t)) runs across curve L1r horizontally from right to left,

then it stays in region R2 and approaches (Ss, Es);
3. The solution (S(t), E(t)) runs across curve L2l vertically from top to bottom, then

it stays in region R3 and approaches (Ss, Es).

Consider the curve Q(S, E) = R, where R ≤ 0. It can be written as

−k−2 E2 + (k−2 − k1)SE + (k−2 E0 − k−2S0 − (k−1 + k2))E

+(k−1 + k2)E0 − R = 0, (47)

which is also a hyperbola with (Ŝ, Ê) as its center. What we concern is the intersection
point (0, ER) between this curve and the E−axis. Let S = 0 in (47), and denote
(k−2 E0 − k−2S0 − (k−1 + k2)) as b1, ((k−1 + k2)E0 − R) as c1.

ER =
−b1 ±

√
b2

1 + 4k−2c1

−2k−2
. (48)

We only need to consider the positive one, which is

ER =
−b1 −

√
b2

1 + 4k−2c1

−2k−2
=

b1 +
√

b2
1 + 4k−2c1

2k−2
= 2c1√

b2
1 + 4k−2c1 − b1

. (49)

Note that

Lemma 3 Curve Q(S, E) = R (R < 0) is above curve Q(S, E) = 0 in the first
quadrant (cf. Fig. 3). For fixed R ≤ 0,

lim
S0→+∞ ER = 0. (50)
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Fig. 3 Curve Q(S, E) = R (R < 0) (red) is above curve Q(S, E) = 0 (green) in the first quadrant
(Color figure online)

QSSL1 in RM: Given any small positive number ε > 0, there is a proper positive
number U such that C(t) will go upwards from 0 at t = 0 to E0 − ε in a period less
than ε, then it will stay in the interval between E0 and E0 − ε forever.

Proof The reaction starts with S(0) = S0 and E(0) = E0. At this moment,
d E/dt (0) = −k1S0 E0. Given small positive number ε > 0, choosing S0 > 1/(k1ε),
we can insure the initial point (S0, E0) and the equilibrium point (SS, ES) is sep-
arated by curve Q(S, E) = −E0/ε. Note that Q(S, E) = −E0/ε lies above the
curve Q(S, E) = 0 in the first quadrant according to Lemma 3. By this restriction, the
solution (S(t), E(t)) must cross the hyperbola Q(S, E) = −E0/ε before approaching
the equilibrium point. Denote by tε the time to make the solution (S(t), E(t)) inter-
secting with the curve Q(S, E) = −E0/ε, that is Q(S(tε), E(tε)) = −E0/ε, then
Q(S(t), E(t)) < −E0/ε for 0 ≤ t < tε. Hence,

tε ≤ E0
E0
ε

= ε. (51)

By Lemma 3, given any positive number ε and −E0/ε < 0, there exists a positive
U0, such that, if S0 > U0, ER < ε. That leads to the first quadrant part of curve
Q(S, E) = −E0/ε lies under the horizontal curve E = ε. Thus, in a period less than
ε, the solution (S(t), E(t)) arrives at the curve Q(S, E) = −E0/ε which lies under
the horizontal curve E = ε, i. e. E(t) ≤ ε. According to Lemma 2, there are only
three possible ways to approach the equilibrium point. In Trajectory 1 and Trajectory
3, E(t) is decreasing forever. In Trajectory 2, E(t) will decrease until the solution
runs across L1r , and then it will increase to ES as time goes to infinity. In this case,
ES < ε. Thus, no matter which cases, E(t) < ε, when t > ε.

Here, a choice of

U = max{U0, 1/(k1ε)}, (52)

completes the proof. �
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4 Proof of QSSL2 in RM

In order to prove QSSL 2 in RM, we need to consider the second order differential
equation concerning E derived from the system (16)–(17). Let

V = d E

dt
.

Then,

dV

dt
= d2 E

dt2

= −2k−2 EV + (k−2 − k1)V S + (k−2 − k1)E
d S

dt
+(k−2 E0 − k−2S0 − (k−1 + k2))V,

and V (0) = −k1S(0)E(0) + (k−1 + k2)(E0 − E(0)) − k−2 E(0)(S0 − E0 − S(0) +
E(0)) = −k1S0 E0. For

V = d E

dt
= −k−2 E2 + (k−2 − k1)E S + (k−2 E0 − k−2S0 − (k−1 + k2))E

+(k−1 + k2)E0,

S = (V + k−2 E2 − (k−2 E0 − k−2S0 − (k−1 + k2))E

−(k−1 + k2)E0)/E(k−2 − k1).

Thus,

dV

dt
= −2k−2 EV

+V (V + k−2 E2 − (k−2 E0 − k−2S0 − (k−1 + k2))E − (k−1 + k2)E0)/E

+E(−k1(V + k−2 E2 − (k−2 E0 − k−2S0 − k2)E − k2 E0)

+k−2k−1(E0 − E)) + (k−2 E0 − k−2S0 − (k−1 + k2))V .

The right hand is denoted as A(E, V ) which can be treated as a quadratic function
of V :

dV

dt
= A(E, V ) = V 2

E
− ((k−2 + k1)E2 + (k−1 + k2)E0)V

E
+E(−k1k−2 E2 − (k1k−2(S0 − E0) + k1k2 + k−1k−2)E

+(k−1k−2 + k1k2)E0)

We get the system

d E

dt
= V (53)

123



J Math Chem (2013) 51:2668–2686 2679

dV

dt
= A(E, V ) (54)

with initial condition (E(0), V (0)) = (E0, −k1S0 E0).
First, we consider the vector fields on the plane E−V . Since 0 < E(t) ≤ E0 for any

t , it is enough to consider the vector fields of this system in the region 0 < E(t) ≤ E0.
Let the right hands of system (53)–(54) be zero. Then

V = 0

E = 2c

−b + √
b2 − 4ac

(55)

where b = −(k1k−2(S0 − E0) + k1k2 + k−1k−2), a = −k1k−2 and c = (k−1k−2 +
k1k2)E0 (cf. Eq. (23)). The negative solution is omitted. The right hand of (55) is just
Es . This is not a coincide, for the system considered in this section is derived from
system (16)–(17). To sum up, (Es, 0) is the singular point of system (53)–(54).

Assume S0 > E0. For each fixed E , treat A(E, V ) = 0 as a quadratic equation
of V . The constant part of this equation is:

E(−k1k−2 E2 − (k1k−2(S0 − E0) + k1k2 + k−1k−2)E + (k−1k−2 + k1k2)E0).

Denote a2 = 1/E, b2 = −((k−2 + k1)E2 + (k−1 + k2)E0)/E and c2 as the constant
part. Consider the discriminant

� = b2
2 − 4a2c2.

If E > ES, c2 < 0, then � > 0 and there is a negative and a positive solution of V .
If 0 < E < Es ,

c2 = E(−k1k−2 E2 − (k1k−2(S0 − E0) + k1k2 + k−1k−2)E + (k−1k−2 + k1k2)E0)

≤ E((k−1k−2 + k1k2)E0) (56)

We can get

� = b2
2 − 4a2c2

> (((k−2 + k1)E2 + (k−1 + k2)E0)
2 − 4(k−1k−2 + k1k2)E0 E2)/E2

> (((k−2 + k1)E2 + (k−1 + k2)E0)
2 − 4(k−2 + k1)(k−1 + k2)E0 E2)/E2

= ((k−2 + k1)E2 − (k−1 + k2)E0)
2/E2

> 0.
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Fig. 4 The shape of
A(E, V ) = 0

That is to say, there are two positive solutions of V . For E = E0 and V =
V0(= −k1S0 E0),

A(E0, V0) = k2
1 S2

0 E0 + k1S0((k−2 + k1)E2
0 + (k−1 + k2)E0)

+E0(−k1k−2 E2
0 − (k1k−2(S0 − E0) + k1k2 + k−1k−2)E0

+(k−1k−2 + k1k2)E0)

= k2
1 S2

0 E0 + k2
1 E2

0 S0 + k1(k−1 + k2)E0S0

> 0

Thus, (E0, V0) is below the curve A(E, V ) = 0.
Now, we can sketch the shape of A(E, V ) as Fig. 4 and the phase flow of this

system as Fig. 5.
From the phase flow, we obtain

Lemma 4 Solutions of the system (53)–(54) with initial condition (E(0), V (0)) =
(E0, −k1S0 E0) will finally approach the equilibrium point (Es, 0) as time goes to
infinity. There are two possible kinds of trajectories to approach (Es, 0) (cf. Fig. 6):

1. The solution (E(t), V (t)) will approach (Es, 0) in the way that E(t) decreases
monotonically to Es and V (t) increase monotonically to 0;

2. At first, E(t) decreases monotonically and V (t) increase monotonically to 0. After
that, the solution (E(t), V (t)) runs across the segment (0, Es) on E−axile
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Fig. 5 Phase flow of system (53)–(54)

Fig. 6 Two possible kind of trajectories to approach the equilibrium point

vertically from bottom to top. Then, E(t) and V (t) increase. (E(t), V (t)) will run
across A(E, V ) = 0 horizontally from left to right. Finally, E(t) increases to Es

and S(t) decrease to 0.

QSSL2 in RM: Given any small positive number ε > 0, there is a proper positive
number U such that | dC

dt (t)| will be less than ε forever with the exception of a fast
initial period less than ε, if S0 > U .

Proof Under the condition 0 < E < Es , for each E, A(E, V ) = 0 has two positive
solutions of V . Denote them as V1 and V2 where V1 ≤ V2. For (56)
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V1V2 = c2

a2
≤ E2((k−1k−2 + k1k2)E0) ≤ E2

s ((k−1k−2 + k1k2)E0).

Given the positive number 1 > ε > 0, according to Lemma 1, there exists a positive
U1, such that Es < ε/

√
(k−1k−2 + k1k2)E0 when S0 > U1. Under this condition,

V1V2 < ε2. (57)

Then, V1 < ε, i.e. in Fig. 6 when S0 > U1, the height of “green hill” on the interval
0 < E < Es is less than ε.

By QSSL1 in RM, there exists a positive U2, such that when S0 > U2, E(t) will
go downwards from E0 at t = 0 to ε2/2 in a period t1 less than ε2/2, then it will stay
in the interval between 0 and ε2/2 forever.

Lemma 4 states two possible kinds of trajectories. No matter which case, V increases
to 0 after the reaction begins. When S0 > U2, after a period t1 less than ε2/2, E(t) go
downwards from E0 at t = 0 to ε2/2. Thus, from t1, V (t) = d E/dt (t) < −ε can not
last for

ε2/2

ε
= ε

2
. (58)

That is to say, for t > t1 + ε/2, V (t) > −ε.
If the solution of system (53)–(54) adapts the first kind of trajectories, V (t) will be

greater than −ε and less than 0 for t > t1 + ε/2, i.e. |V (t)| < ε for t > t1 + ε/2.
Notice that t1 + ε/2 < ε.

For the second kind of trajectories, V (t) can not be greater than “the height of
the green hill” (c.f. Fig. 6), which is less than ε if S0 > U1. Thus, choosing U =
max{U1, U2} completes the proof. �


5 Numerical examples

To make our laws and proofs easier to understand, we give some numerical examples
in this section.

In the following numerical example, we fix the rate constants of (8) as k1 = 2, k2 =
2, k−1 and k−2 = 1. We choose E0 = 1 as the initial concentration of enzymes.

5.1 Examples for QSSL1 in RM

According to the proof of QSSL1 in RM, U is chosen by (52). If we choose ε =
0.5, 1/(k1ε) = 1. R will be −E0/ε = −2.

ER = 2c1√
b2

1 + 4k−2c1 − b1

= 10√
(2 + S0)2 + 20 + 2 + S0

. (59)
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Fig. 7 Concentration of enzyme of the first 10 units of time. Parameters: k1 = 2, k2 = 2, k−1, k−2 =
1, E0 = 1, ε = 0.5 and S0 = 9

Fig. 8 The relationship of concentrations of enzyme and substrate during the whole reaction. Parameters:
k1 = 2, k2 = 2, k−1, k−2 = 1, E0 = 1, ε = 0.5 and S0 = 9

Fig. 9 Left panel Concentration of enzyme of the first 0.2 units of time. Right panel The enlargement of the
left bottom part of left panel. Parameters: k1 = 2, k2 = 2, k−1, k−2 = 1, E0 = 1, ε = 0.05 and S0 = 460

It is easy to prove that if S0 > 8, ER < 0.5 = ε. So we choose S0 = 9 as the initial
condition. E(t) goes from 1 to 0.46 in time 0.05 (cf. Fig. 7). And then, it stays in the
interval [0, 0.5] forever (cf. Fig. 8).

If we choose a much smaller ε = 0.05, 1/(k1ε) = 10. R will be −E0/ε = −20.

ER = 2c1√
b2

1 + 4k−2c1 − b1

= 46√
(2 + S0)2 + 92 + 2 + S0

. (60)

It can be proved that if S0 > 458, ER < 0.05 = ε. So we choose S0 = 460 as the
initial condition. E(t) goes from 1 to 0.045 in time 0.004 (cf. Fig. 9). And then, it
stays in the interval [0, 0.05] forever (cf. Fig. 10).

Thus, these numerical examples are completely consistently with QSSL1 in RM.
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Fig. 10 Top panel The relationship of concentrations of enzyme and substrate during the initial 10 units
of time. Bottom panel The enlargement of the top panel while the solution runs across Q(S, E) = 0.
Parameters: k1 = 2, k2 = 2, k−1, k−2 = 1, E0 = 1, ε = 0.05 and S0 = 460

5.2 Examples for QSSL2 in RM

As the above subsection, we choose ε = 0.5 and ε = 0.05 respectively.
In the proof of QSSL2 in RM, the bound is chosen as the larger one between U1

and U2. U1 is the number that if S0 > U1, then Es < ε/
√

(k−1k−2 + k1k2)E0. And
U2 is chosen as the bound in QSSL1 in RM for ε2/2.

For the case ε = 0.5, U1 can be fixed as 10 and U2 can be 38. Thus, we choose
S0 = 39 as an example. |dC/dt | runs downwards from 78 to 0.43 in a period less than
0.07 and |dC/dt | < 0.5 forever.

For the case ε = 0.05, U1 can be 111 and U2 can be 18,398. Thus, we choose
S0=18,400 as an example. |dc/dt | runs downwards from 36,800 to 0.04 in a period
less than 0.0004 and |dC/dt | < 0.05 forever.

These examples are totally consistently with QSSL2 in RM.

6 Conclusion

The fundamental assumption QSSA has been proved in [26] and named Quasi-Steady-
State Laws for the simplest one substrate one product model. In this paper, we extend
the application of QSSA in a more general model, the reversible one substrate one
product model. In real life processes, chemical reactions are usually reversible. As in
[26], we reexpressed QSSA in two versions:

1. Under the condition that concentration of substrates is in great excess over concen-
tration of enzymes, after the initial transient period, the enzyme-substrate complex
remains approximately constant;

2. Under the condition that concentration of substrates is in great excess over concen-
tration of enzymes, after the initial transient period, the rate of enzyme-substrate
complex is approximate zero.
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We proved that these two versions are both right by the qualitative theory of dynamical
systems. Then, we name them as Quasi-Steady-State Law 1 and Quasi-Steady-State
Law 2, respectively.
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